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ADAPTIVE CANCELLER LIMITATIONS DUE TO
FREQUENCY MISMATCH ERRORS

I. INTRODUCTION

An adaptive canceller combines auxiliary channels of data with a main channel of data in such a
way so as to minimize the main channel output noise power residue. Hence, this is an effective way of
eliminating unwanted data (or noise) from a main channel (the information channel) by inputting
correlated data from auxiliary channels. Mismatch errors of any kind between channels of an adaptive
canceller can cause a reduction in the achievable cancellation ratio. These mismatch errors can include
small time delay differences, in-phase (I) and quadature-phase (Q) imbalances, strobing errors, and fre-
quency mismatch errors among the various channels. For a radar or communications digital canceller,
many of these errors occur due to the radio frequency (RF)-to-intermediate frequency (IF)-to-
baseband-to-sample and hold (S+H)-to-analog-to-digital (A/D) chain which is present in each channel.
If any link of this chain is not identical among the channels, there are mismatch errors which cause the
canceller performance to degrade.

In this report, we concern ourselves with just frequency mismatch errors. Other research in this
area can be found in Ref. 1. To compensate for frequency mismatch errors, often adaptive digital
transversal filters are inserted into the auxiliary channels. Figure 1.1 illustrates a two channel compen-
sated adaptive canceller. Here, we have two signals yM(t) and YA (t) inputted into the main and auxil-
iary channels, respectively. These signals will normally pass through bandpass filters in each channel.
The bandwidth of these filters is set equal to the bandwidth of the desired signal. Let the frequency
transfer functions (FTF) of the main and auxiliary channels be HM(JOJ) and HA (.J), respectively.
Normally, both of these FTFs are designed to be equal to some desired FTF: H(jwo). However,
because of inaccuracies in the filter synthesis process, HM(Jw) and HA (.1w) may not be equal.

yM(t) MAIN N - XM(t) 
Hmljwl, 2 T ------

W, ' AW
2

W
3

WN

YAI(SI E Y L T
o-_ - HAlo2T *) 

AUX XAt) x x2 X3 XN

Fig. 1.1 -Two channel model of a compensated adaptive processor

To compensate for this mismatch, a transversal filter (or a tapped delay line) is inserted into the
auxiliary channel, and weights w,,n = 1,2, ... ,N on these taps are adjusted so that the output noise
power residue of v(t) (see Fig. 1.1) is minimized. Note that the time delay, T, normally approximates
the Nyquist sampling interval: 1/B where B is the input signal's bandwidth. In addition, the main
channel is delayed such that the auxiliary samples are time-centered.

Manuscript approved August 26, 1985.
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If we define w = (wI,w 2, ... ,WN)T to be the optimal complex valued weighting vector where T
denotes the transpose operating, then it can be shown [1] that w is the solution of the following vector
equation:

R w = r (1.1)

where R is the covariance matrix of the time delayed taps in the auxiliary channel and r is the cross
covariance vector between the auxiliary taps and the time-centered main channel. More formally

R = E{x* XT (1.2)

and

r= E{x* XM} (1.3)

where E{H} denotes the expected value, * denotes the complex conjugate, and x = (x 1,x 2 ,... ,XN)T is
the vector of tapped time delayed signals in the auxiliary channels.

To completely understand the effects of the frequency mismatch errors, the statistical characteris-
tics of the input signals must be known. However, in many instances this may not be possible. We
have chosen to characterize and investigate the effects of the frequency mismatch errors on cancellation
when the adaptive canceller is in the self-cancellation mode as illustrated in Fig 1.2. Here, we have
tied the main and auxiliary inputs together and have inputted a wideband signal, y (t). In this mode the
optimal weights, w, are chosen such that the product of HA (joo) and the transversal FTF match as
closely as possible, HMCw). We then calculate the output cancellation power residue. In a sense, the
self-canceller mode yields best case (or an upper bound on) cancellation performance.

MAIN |

y~~~t)H lj ,, i
WIDEBAND 

NOISE WN

AUX x 3t) x E + 1 1 X,

Fig. 1.2 - Self cancellation mode of a two channel compensated adaptive processor

This report is laid out as follows: Section II describes the pole/zero error model which is used to
characterize the errors in filter fabrication. In Section III, a formula is derived for the output noise
power residue of the self-canceller. In Section IV, a formulation is given for the special case of when
the desired FTF is a Butterworth filter. Results generated from this analysis are presented in Section V.

II. POLE/ZERO ERROR MODEL

In this section, we develop a first order pole/zero error model for the frequency transfer functions
(FTF) of the main and auxiliary channels: HM(JOJ) and HA (Jw), respectively. This error model will
allow us to derive a closed form solution for the cancellation residue as a function of the adaptive can-
celler system parameters. We assume that both these FTFs are designed to be some desired FTF:
H(QJ). However, because of errors in the synthesis process, the poles and zeroes of H(jto) will not be
as designed and will have small perturbations around the desired poles and zeroes. This is illustrated in
Fig. 2.1. There perturbations are assumed small enough so that we can use first order approximations
for the filter responses in the main and auxiliary channels.

2
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Fig. 2.1 - Pole with perturbation

We assume that real and imaginary parts of each perturbation are statistically independent and
identically distributed zero mean random real variables. Also, for convenience we assume that the per-
turbations are statisically independent and identically distributed random complex variables. The vari-
ance of the magnitude of each perturbation is denoted by o-C. Later, we show that the identically dis-
tributed limitation can be deleted. We note at this time that this variance may be a function of the
order of filter and moreover each perturbation of a pole or zero may have a different variance.

We assume that the desired FTF is a ratio of polynomials such that

P (jc)H(co) = (2.1)
Q (iw)

where P () and Q () are polynominals of order m and n, respectively. Consider the Laplace transform
representations of P(jco) and Q jco): P(s) and Q(s). Let sfIP) s2(P), . . ,s(P) be the roots of P(s) and
Si(q) ,S(q) *- ,s(q) be the roots of Q(s). Therefore P(jw) and Q jw) can be expressed as

P Q(i) =fix Qo) - 1~ )--.. Q(0 o Sm P)), (2.2)

Q (.)) = ( -S ) ... OJ Sn q)) (2.3)

Consider just P(jco). Let each root, s(P)5k = 1,2,..,m be perturbed by a small amount, As(p
Then the numerator polynomial is actually P(jw), where

(iao) = ((0_ - S5(P) - As[pP) . ... .jw0 - - . (2.4)

We assume that no roots of P(s) and Q(s) lie on or are arbitrarily close to the jco axis. This assump-
tion allows us to write an expansion of P(ijo) and Q6(j) which does not have any singular points. If
we expand Eq. (2.4) and retain only the lower order terms, then

3
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m
(NO So ( ... QCO Sk-P I ) OX Sk +~ I )... Sm( ) ASk(P

k= I

= ( -S I(P) ... .(i(w ) m [ tl .k=1 -
- P(ij)tl k Sk(P) 1wk =I j - Sk( 

Similarly, we can show that the denominator polynomial when perturbed has the form

Q (w) = Q (/ [ kI j(O- Skq

Therefore, the perturbed FTF has the form

I(ju))Q= I(i)

or

It(H &) = H(0i) 1 + k

where we have retained only the lower order terms.

We rewrite Eq. (28) as

Hf(w) = H(i) II

where we have set

1 A Sk(P )1 - Y, -
k= I jw -Sk

1 j( -Sk(q )
k=1 jo -

A Sk~q) m ASk(P 1
(q)j. ijW - 5k k=1 jwD - S()I

+ I ASk 1
k=1 j°) -S I

A Sk = A1 S2P) I .
Sk kSp) j K = 1,2, .. ,

and

a Sm+k = Ask
Sm+k A Sk)I k = 1,2,. .,n .

As it was previously mentioned, we assume that HM and HA are designed to be matched to
H(io), but because of inaccuracies are not equal to H(iw). We use the pole/zero error model to
express

HM(io) = HQiw) [1
M A stnM)|

+ I A°) Sm
m=1 Iw-S 
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and

HA(1D)= H(j) I+ M jASm( (2.13)

where M is the number of poles and zeros of H(jo) and m is now an index. The parameters
sm,m = 1,2, . .. M are some ordering of the poles and zeros of H(jo), and A sn(A),AsmM) are the pertur-
bations of the poles and zeros of HA (1w) and HMOjw), respectively. These perturbations are assumed
to be independent and identically distributed for both HA (tw) and HM ().

We set

M As (A)
AHA Qco) = I . (2.14)

m=- Jwo - Sm

and

M As(M)
AHM 0) = . m (2.15)

m=n JW - Sm

Therefore, the first order approximations of the perturbed main and auxiliary channel's FTF are

HM(Bw) = H(tw) (1 + AHM(1w)) (2.16)

HA (w) = Hatw) (1 + AHA (1w)) (2.17)

III. RESIDUE DERIVATION

In this section, we derive an expression for the output residue of the compensated canceller seen
in Fig. 1.2. From this figure, we see that the output voltage, v (t), can be expressed as

v(t) = XM(t) - wTx(t) . (3.1)

If we set

Pout = E{ I v (t) 12) (3.2)

and

Pin = E{ IxM ) 12 ) (3.3)

where Pout and Pin are the output and input noise powers, respectively, then we can show [1] that

Pout = Pin - w'Rw (3.4)

where R is defined by Eq. (1.2) and w is the vector solution of Eq. (1.1). In fact, by using Eq. (1.1),
we can show that

Pout= Pin - rtR-'r (3.5)

where t denotes the complex conjugate transpose operation. The output cancellation (or noise attenua-
tion factor) Pou/Pin can then be expressed by

Pout Pin - rtR-lr (3.6)
Pin Pin

5
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Note for the self-canceller that if HA (1w) = HM(1w), that Pout/Pin = 0. We can show this as fol-
lows. Under the previous assumption of this analysis that the main and auxiliary inputs are identical,
the optimal weighting, w0 , for the self canceller is

2 position

I.

wO = (0 ... 1 0 0 .. )T. (3.7)

This is due to the fact that

XN 2 (t) = XM(t) (3.8)

where we have set

N 2 = N + 1 (3.9)

Hence, we simply subtract the N2th output of the transversal filter seen in Fig. 1.2 from the output of
the time delay element in the main channel to yield zero output noise power residue. As a result, if ro
and Ro are the cross covariance vector and covariance matrix under these ideal conditions (perfect
matched filters), then

2 position

Rj-Ir0 = w0 = (0 0 ... 1 0 ... 0)T (3.10)

We use the result of Eq. (3.10) quite often in the upcoming derivations to simplify many of our expres-
sions.

The noise power spectrum Syy(.W), of y(t) is assumed to be white so that Syy( ) = 1 for all a.
Expressions for the elements of Ro and ro are easily derivable. It can be shown that if Ronm is the
nmth element of the matrix RO, then

RO,nm = af IH(jw)1 2 ejirBT(n-m)da, n, m = 1, 2, ... , N (3.11)

where a is some nonzero proportionality constant. In fact, in the following discussions we arbitrarily
set a = 1 because we will be dealing with ratios of powers which implies that none of the outputs calcu-
lated will be a function of a. Note that we have normalized the angular frequency to the desired angu-
lar bandwidth 7rB where B is the frequency bandwidth of the desired FTF, H(j1). Similarly, if r0,n is
the nth element of ro, then

= °° IH(J )I12ej7rBT(n-N2)dw n 1, 2, N. (3.12)

We define the elements of the inverse of Ro as

R-1 = (Ro(nm)) n, m = 1, 2, ... , N. (3.13)

Expressions for the elements of R and r are given by

Rnm = f HA (1w) 12 eji,,rBT(n-m) dw, n, m = 1, 2, ... , N (3.14)

and

r= HA (ico)HM(Jo)ejw~BT(n-N2) dw n = 1, 2, ... , N. (3.15)

6
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If we use the first order approximations of HM(1w) and HA (1w) given by Eqs. (2.16) and (2.17)
respectively, we can show by using Eqs. (3.14) and (3.15) that

Rnm = R0 nm + ARnm n,m = 1,2,... ,N (3.16)

r, = r0o + Arn n = 1,2,... ,N (3.17)

where

ARnm = I 0H12(AHA + AH*)ejBT(n,-m) dw + HI2 IAHA 12 ejwo7rBT(n- m) dw

n, m = 1, 2,..., N (3.18)

and

Arn = 1 HI2 (AHA + AHj)ej2BT(n-N 2 ) dw + O(AHA*HM) n = 1, 2, ... , N. (3.19)

Furthermore, if we define

Pin = Pin + p + (3.20)

where Pi(n°) is the input power when there are no perturbations, then we can show that

APin = f HI2 (AHM + AHli)dw + f HI2 IAHMI2dw. (3.21)

We rewrite the output power residue given by Eq. (3.5) in terms of the perturbations given by
Eqs. (3.16), (3.17), and (3.20):

Pout = Pi") + APin - (ro + Ar) t (Ro + AR)-' (ro + Ar) (3.22)

where

Ar = (Arl, Ar2, ... , ArN)T (3.23)

and

AR= (ARnm) n, m =1, 2, ... ,N. (3.24)

Note that the AR matrix is hermitian Toeplitz. We use a second order approximation of (Ro + AR)-'
This can be shown to be

(Ro + AR)-' = R- 1 - Rc-1ARR-1 + R&-ARRo-ARRI-1. (3.25)

If Eq. (3.22) is expanded and only the second order and below perturbation terms are retained, then

Pout = Pi(') + APin - rorRO ro - ArtR-lro - roRo-'Ar

-Ar'R lAr + ro0R lARR-lr0 + Ar1Ro-ARR-lr0

+ ro0R lARR-lAr - r0
1 AR-1RR-'ARR0-r0 . (3.26)

Note that an immediate simplification of Eq. (3.26) results because

Pin°) - r0'R0-r 0 = 0. (3.27)

We average Pout over the identical zero mean probability density functions (p.d.f.'s) of the pole and
zero perturbations in order to obtain an average cancellation residue. Since the p.d.f.'s are zero mean,
it follows immediately that

E{Ar'R 1 -Ir0 } = 0 (3.28)

7
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and

E{ro'R-Ar} = 0. (3.29)

Further simplifications are possible due to Eq. (3.10). Derivations of the rest of the terms in Eq.
(3.26) averaged over the pole/zero perturbations are given in Appendix A. We merely state the
results. If 2-r is the variance of a pole/zero perturbation, then

E{APin) } Fr (3.30)

E{Ar'R-lAr} = 2 r 2Fr2 (3.31)

EtroR-7ARR-lAR} = E{Ar'Rc1ARR 1rO} = cr2F2 (3.32)

EtrO'R0-ARR'rO = o- c2r (3.33)

E{ro'R-'ARR-'ARR-'rO} = 2oFr2 (3.34)

where

r IH I 2d (3.35)
Ijw - SiI

and

r2 M N [R~km JHI12 ejwBT(N2-k dw

i=1 k=1 m=J - j

- JHI2 ejw7r N2) dwo (3.36)
fo -jcd - Se

We define P('Ie) to be equal to Pout, average over all the perturbations. Examining Eq. (3.6) and
Eqs. (3.30) to (3.34), we see by use of the above results that P(ute)l/Pin is proportional to cr2 and that
the constant of proportionality in the first order approximation does not change if we set Pin= Pin
By adjusting the gain of IH(w) 12 we can arbitrarily set Pi(n) = 1; i.e.,

fb IH(1w )12 do = 1. (3.37)

Thus by substituting Eqs. (3.30) to (3.36) into Eq. (3.26), and by simplifying and normalizing we can
show that

p (ave)/pin if 2H
out 2' I -° ld -o 2(T2 ljo) 1-'Si 12

N N grog I- H2ejorBT(N2-k)dw JH° 1HI2ejBT(mN2) d (3 38)
k=1 m=1 ] ~-~ r(.8

We call [Po(ute)/pin ]/Fr the cancellation-filter mismatch ratio, CFMR.

We note that the restriction that all the poles and zeroes have the same variance, OF, can be
easily removed. If o2 is the variance of the perturbation on the mth pole or zero of H(s), then we

8
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could have simply expanded P(e) in terms of 2, m = 1,2, ... , M. The resultant formulation
would have exactly the same form as Eq. (3.38) except that o- is replaced by (o whereF F~~~~~~ave

2 _ M
Fave =M A crI (3.39)

IV. A SPECIAL CASE: THE BUTTER WORTH FILTER

In this section we evaluate the cancellation-filter mismatch ratio, CFMR, for the case when the
desired transfer function is a Butterworth filter. This filter is of much interest because it is easily syn-
thesized and is a bandpass filter with the attenuation of the skirts controlled by the order of the filter.

This filter has the following magnitude squared angular frequency response:

IH(1,w) 12 = CO

1 + CO M
(4.1)

where M defines the order of the filter, the angular frequency has been normalized to the desired
angular bandwidth, 7rB, and

M . ir
CO=- sin

7r 2M
(4.2)

The constant c0 has been chosen so that Eq. (3.37) is satisfied. Curves of the Butterworth filter
response are shown in Fig. 4.1 for various values of M. Note, that by increasing the order of the
Butterworth filter, M, that the skirts of the bandpass filter become more attenuated.

IH(j.) 12

10
7 II I I1

1.0
7r

10 1

77

7T-

(wo/o)

Fig. 4.1 - Butterworth filter response

The filter is synthesized by finding an H(s) function whose poles are in the left-hand side of the
s-plane such that

H(s)H(-s) is = y. = IH(1w) 12 (4.3)

9
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Now the poles of IH(co) 12 can be shown to lie on the unit circle and are spaced equally in angle as
illustrated in Fig. 4.2 for M = 3. Hence in order to find H(s), the M left-hand plane poles of
IH(J&w)I2 are identified and used to form the polynomial, H(s); i.e., if si, i = 1, 2, ... , M are the
left-handed poles, then

H(s) = V-/g[(s-S- (S -S2) ... (S - sM)]-1. (4.4)

s-PLANE

POLE

IMAG.

,UNIT CIRCLE

Fig. 4.2 - Pole plot of Butterworth filter of order, 3

REAL

To evaluate the CFMR, the integrals of Eqs. (3.35) and (3.36) must be evaluated. This can be
done by using the Theory of Residues [2] and is outlined in Appendix B where expressions for these
integrals are obtained. From Eq. (3.38), we also need an exact expression for the elements of Ro from
which the elements of Ro-1 can be obtained through matrix inversion. Summarizing the results of
Appendix B:

R.m IC0 S 7rBT(n-m)sin 7 (2I1)) i 7 - I(21-I)+BT(n-m)cos " (21-1))
m 2 ) 2 M2M

/ =1
for m > n

R XcO S -TrBT(n-m)sin 7r (21-1)jr-2+2 (21+1)+BT(n-m)cos rM(2-0))Rnm M e ~~~2M2 2M 2Mfoi n

Rn IHI2dw = Tc0 1

X ~~~~=1

' J1W - Si 12 2 sin -1T-(2i - 1)
2M

IHI2 e 7rBT(N2-n)d

jw - S,
(N2 -n0rBTsin 7r (2m-1) j(N2 -n)7rBTcos 7r (2m-1)

ITcO e 2m e 2M

M m= I - ej.M (i+M1)Mm 1~~~ -e M for N2 < n

10
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j1w ir BT (N 2 - n)
e dow

jw -Si

= -M m (M5.- W2 - n) 7rBTje 2M )im

-(N 2-n)7rBTsin-fr(2m-1) j(N2 - n7rBTcos A (2m-1)
. e 2M ~~e 2M

1 - as. 1 - 7 i 1
for N2 > n

- I H 1 2 erBT(n-N2)dw

- 0 -jw0 -5e
= If - IH12ejw7TBT(N2-n )dw

ja - S, I

JI if i=iM
aim = 10 otherwise (4.9)

Note that Eq. (4.8) follows by the definition of the complex conjugate operation.

V. RESULTS

A. Introduction

In this section, we present some results of the effects of frequency mismatch errors on self-
cancellation. Specifically, curves of the Cancellation-Frequency Mismatch Ratio, CFMR, versus the
various input parameters,

* M, the order of the Butterworth filter

* N, the number of time delay taps, and

* BT, the filter bandwidth-tapped time delay product

are plotted and discussed. Also, a procedure for choosing the "optimum" M, N, and BT is outlined in
the Discussion subsection.

Note that in some cases the numerical calculations involved in obtaining CFMR were very sensi-
tive to the eigenvalues of R0, the ideal covariance matrix (even using double precision complex arith-
metic on a VAX-750). Because of this sensitivity it was necessary to add statistically independent inter-
nal noise to each of the tapped delay outputs. In regards to R0, this added an internal noise power
term, o-n , to each of the diagonal elements of Ro. It was found that an external jamming (the self-
cancellation input signal) to internal noise ratio, JIN, of 50 dB resulted in excellent numerical stability
in calculating CFMR. Furthermore, if J/N were increased to 70 dB, the results changed minutely.
Hence for the curves to be presented, we list the JIN under which the CFMR was calculated.

11
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B. The Butterworth Filter Order

Figures 5.1 through 5.10 present plots of CFMR versus the order of the Butterworth filter, M.
For each figure, BT is held constant and contours of CFMR with N, the number of time delay taps are
plotted. We note that cancellation improves as CFMR decreases. From these figures, we observe that

* cancellation (or CFMR) obviously improves by increasing the number of time delay taps;
* the CFMR in many cases has a minimum as a function of the order of the Butterworth filter,

M; and
* the minimum also depends on the bandwidth-tapped time delay product, BT.

We discuss the first and third observations in more detail in subsections D and C, respectively.
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Fig. 5.1 - CFMR vs M, BT = .1

The occasional minimum in the curves as function of M can be explained as follows. There is a
certain amount of aliasing which occurs due to the transversal filter in the auxiliary channel; i.e., the
transversal filter has a periodic frequency response. Hence the tails of the main channel's perturbed
Butterworth filter frequency response near the sampling rate frequency (which is assumed constant for
each figure and related to BT) are not accurately matched. As the order of the Butterworth filter
increases, these tails decrease in magnitude about the sampling rate frequency and hence auxiliary
channel aliasing effects decrease. As a result there is better matching up to a point. The fact that we
are degrees of freedom (DOF) limited (recall that N is assumed a constant), results in the CFMR
increasing after reaching some minimum; i.e., the more poles in the Butterworth filter, the more ir-
regularities in the frequency response which must be matched.
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C. The Bandwidth-Tapped Time Delay Product

The minimum values of CFMR as seen in Figs. 5.1 to 5.9 are also functions of the bandwidth-
tapped time delay product, BT. From these figures, we see that for a constant N and decreasing BT,
that the minimal CFMR occurs at decreasing values of M. This can again be explained by considering
aliasing effects: a higher sampling rate (or smaller BT) can tolerate a lower order of Butterworth filter
while maintaining a constant aliasing degradation.

Note that by comparing Fig. 5.10 where BT=1 with Figs. 5.1 to 5.9 where BT< 1, that sampling
at the filter bandwidth (or the information bandwidth) results in very poor cancellation performance.
This is again due to aliasing, which is caused by the periodic frequency response of the compensating
transversal filter. Hence, for cancellation systems using a bandpass filter, one should never sample at
the Nyquist rate if possible.

In Fig. 5.11, we have plotted CFMR versus BT for various values of N and M = 6. Here, we
observe that the CFMR has a minimum with respect to BT (for this example, the minimums over all
curves occurs when BT: 0.6). The value of CFMR decreases as BT decreases from one because the
negative effects of aliasing are being reduced. However, as BT becomes smaller, the tapped time delay
decreases and because there is a fixed number of taps, the transversal filter cannot accurately match the
main channel's irregularities. In essence, the tails of the time correlation function associated with the
power spectrum of the transversal filter degrades in matching the tails of the main channel's time corre-
lation function (associated with its spectrum) because NT decreases as BT decreases. In the limit of
course as BT or T-*0, the transversal filter with N taps is equivalent to a transversal filter with just
one tap (and no time delays). Hence, CFMR must increase as BT becomes very small.
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D. The Number of Time Delay Taps

In Fig. 5.12, curves of CFMR are plotted versus N, the number of time delay taps for various
values of M with BT = 1. It was previously observed that CFMR decreases as N increases for a con-
stant M and BT. However, note that the cancellation goes to some lower bound as N -° . This
results because of the adaptive transversal filter, regardless of its order, is not a good match to the main
channel beyond the sampling rate frequency. The main channel's frequency spectrum has tails which
extend beyond the sampling rate frequency. These tails are poorly matched by the transversal filter,
and a finite noise power residue results which is independent of N but dependent on BT and M.
Hence, we see that merely increasing the number of time taps does not result in the cancelled noise
residue going to zero or some.arbitrarily small number. We also note that the CFMR is not necessarily
monotonic with the order of the Butterworth filter, M, as depicted in Fig. 5.12 for when BT = 1. In
fact for all cases, BT < 1, it is not.

E. Discussion

In this subsection, we briefly outline a design procedure for choosing BT, M, and N such that
the cancellation is "optimized" in some sense. In our previous analysis, we have only considered one
auxiliary channel. In many applications there are multiple auxiliary channels which are used to cancel
the noise in the main channel. Each of these channels has a bandpass filter and an adaptive compensat-
ing transversal filter, as was shown for the case of the single auxiliary as seen in Fig. 1.1. For the self-
canceller, because the adaptive transversal filter in each auxiliary channel attempts to match each of the

18
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auxiliary channels to the main channel, we see that choosing the best BT, M, and N for one auxiliary
channel is essentially equivalent to choosing the best BT, M, and N for any number of auxiliary chan-
nels. Hence, the design procedure, which will be outlined, is applicable to a canceller with any number
of auxiliary channels.

Let us set

= CFMR
2

(5.1)

where

(5.2)p (ave)
C = f~'P

Here we have defined C to be the average cancellation. We can readily discern two types of optimiza-
tion problems:

1. maximize (in a negative sense) the cancellation, C, under a given set of constraints or,

2. given a required C, maximize o-2 under a given set of constraints.

For many kinds of antijamming design problems, the second type of problem is more realistic. In this
case, we calculate how much cancellation is needed in a given jamming scenario, and try to relax to sys-
tem specification, o-F, as much as possible.

19

F_ t
=C -

-o

(12

0•

I D

C: -
r1-

CEI

c:

3:

CD

-1-
- I D

[L

U- ID_



KARL GERLACH

Both types of design problems are subject to a number of constraints on M, N, and BT. We
briefly list the constraints and some of the causes of these constraints.

* Nmin < N: set by the matching requirements among channels for the external signals, mul-
tipath, antennas, RF front ends, etc.

* N < Nmax: set by computational load limits, finite sampling window
* BTmjn < BT: information bandwidth requirement
* BT ( BTmax: system limitations
* M Mmax: synthesis limitations, cost, response time
* 2= f (M): error is a function of Butterworth filter order.

Note in the optimizations procedure for most cases the optimal N will equal Nmax. The last item men-
tioned above would have to be determined by a statistical analysis of the rms error of the poles as a
function of the Butterworth filter order and the errors in the synthesis process.

Hence we see that given that the constraints on BT, M, and N are defined, and given the curves
of CFMR (or Eq. 3.38), a computer search program could be developed which finds the BT, M, and N
which either maximizes the cancellation (problem 1) or maximizes o2 (problem 2, given C required).

We should point out, however, that one rarely goes to a filter designer with a specification such as
the variance of the pole perturbation. Normally one specifies the ripple across the passband and the
rms difference between the synthesized filter and the ideal filter across the passband. Hence the can-
celler designer must make a conversion from a-F to these filter design parameters if some meaningful
specification is to be made. After the filter is fabricated, the canceller designer can have the filter
designer test the filter and see that the poles fall within the variance, -2. (Note that if one specifics
TaFve over all poles to less than aF, the filter specifications are satisifed.)

For example, let us assume that o- is not a function of M and that BT, M, and N have the fol-
lowing constraints: 1 < BT < 1, 5 < N < 11, 1 < M < 15. We desire -30 dB of cancellation.
Under these conditions, we would find that the optimal parameters are BT = 0.4, N = 11, and M = 4
with CFMRopt= -19 dB. Hence o-2 = -11dB, or the relative rms perturbation error on the poles is
approximately 30%. Note that if we desired 50 dB of cancellation, this relative rms error would be
approximately 3%.

VI. SUMMARY AND CONCLUSIONS

The effects of frequency mismatch errors on adaptive cancellers have been investigated. The fre-
quency mismatch errors occur because of errors in the synthesis process of supposedly identical
bandpass filters which are in each of the input channels. These frequency mismatches among the chan-
nels result in cancellation degradation. Tapped delay line transversal filters can be used to compensate
for these frequency mismatches and thus improve cancellation performance.

A pole/zero error model of the filters has been developed whereby closed form solutions of the
maximum achievable cancellation are obtained. This cancellation is a function of the order of the
ideally matched frequency filters, the number of time delay taps in the compensating transversal filter,
the bandwidth-tapped time delay product, and the constraints on these parameters. A design procedure
was outlined for "optimizing" the canceller with respect to these parameters and their constraints.
Specifically, results were presented for when the input filters are the Butterworth type. It was shown
that an arbitrarily low output noise residue cannot be achieved by arbitrarily increasing the number of
time delay taps.
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Appendix A
DERIVATION OF EQUATIONS (3.30) TO (3.34)

1. The E{APJ,) Term:

We showed in the text (see Eq. 3.21) that

APin = fJ THi2 (AH, + AHMJ) dw + f HI 2 IAHMI2 dw. (Al)

Now

M As(M)
AHMjow)= M * ' (A2)

i=l JXd- Si

Let As,(M),i = 1,2, .. ,M, be identically distributed independent zero mean random variables with
covariance: -2. Also let the real and imaginary parts of As,(M) be identically distributed and indepen-
dent. If we substitute Eq. (A2) into Eq. (Al) and take the expected value, the first term of Eq. (Al)
is zero because the As, is zero mean and the following expression results:

E{APin} = f HI 2 E X '_ [ dco. (A3)

If we rewrite the summation by expanding the magnitude in Eq. (A3) and evaluate the expected values
of the cross terms (many are equal to zero), then Eq. (A3) can be simplified to

E{APin} = 0-2 S IH12 dwoE[A~in) F f__ - Si12 (A4)

2. The E{r' R-1 AR R- 1 ro) Term:

Because Ro- ro= (0,0,...,1,0 ... .L)T where the 1 is in the N2 position (the middle), the evalua-
tion of this term reduces to just finding the expected value of the center element of AR. From Eq.
(3.18), it follows that

ARN2 N2 = X HI 2 (AHA + AHA *) da + f IHI2 IAHA 12 d@). (A5)

Now

M As S(A)
AHA o0)= AsA ' (A6)

i=I JW -Si

The As/(A) have the same kind of statistics as As/(M). The forms of Eqs. (A5) and (A6) are identical to
Eqs. (Al) and (A2), so that it follows from our previous derivation that

E{r1 ' R- 1 ARR- 1 ro) = E{APinl. (A7)

The expression for E{APin) is given by Eq. (A4).
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3. The E{r I R- I ARR -' AR R -'rol Term:

We can write

rj1R1 -1 ARRO-1 ARRo-1 ro = (RoIro)t ARRO-1 AR (Ro- 1 ro). (A8)

Since Ro1 ro = (0,0, ...,l0,... 0 )T, the expected value of the above is equal to the expected value of
the center element of the matrix, ARR-1 AR. It is straightforward to show that

N N
E{(Ri-ro)t ARRO 1 AR(R&- ro)) = S £ R(km) E{ARN 2 k ARmN 2 }. (A9)

k=l m I
If we use expressions for ARN2k and ARmN2 by using Eq. (3.18), we find that

E{ARN k ARmN} = E H 112 (AHA + AHA *)ejwBT(N2 - k)do

f. X HI 2 (AHA + AHA *)eiwvBT(m-N2)do'J + E (O(AHHA3)}. (A10)

If we evaluate only the first term of Eq. (A10) by substituting Eq. (A6) into Eq. (AlO), and use the
fact that

E{ASi2) = 0, (Al1)

then it can be shown that
eJ2.)7BT(N2-k)do 12j-rB~-2

{ 2RN2k ARmN2=HI 2 e112 eJ=2BT(m N2 ) d] ] (A12)jo' - Si ~o~i
Hence by substituting Eq. (A12) into Eq. (A9), Eq. (3.39) results.

4. The E{rI Rc-7 ARR 1 -7 Ar) Term:

We write

r0tRO-j ARRO-I Ar = (Ro- ro)t ARRo- Ar. (A13)

The term ARR-1 Ar is a vector and because of Eq. (3.10), the above expected value is simply the
expected value of the center element of this vector. Thus, we can show that

E{ro'R- 1 ARR&- Ar) = l £ RO(km)E{ARN 2 k Arm). (A 14)
m=1 k=1

If we substitute the forms of ARN 2 k and Arm given by Eqs. (3.18) and (3.19) respectively, we find that

E{ARN k Arm) = E | f IH12 (AHA + AHA *) ejwBT (NW2k)d

HI 2 AHA * ejwrBT(m N 2) do' + E{O(AHA AHM)}. (A15)

The last term in Eq. (Al5) is equal to zero, and the first term can be evaluated to be

~~~I12 j IIew7rBT(N 2-k) do JH 12 ej onTBT(m-N 2) do'
E{ARN2 k Arml = OF J I IH) e 2Ae6)

Thus Eq. (A16) is substituted into Eq. (A14) and Eq. (3.32) follows.
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5. The E{Ar'RO- AR R-' ro) Term:

By examination of Eqs. (A14) and (A16), and the fact that Ro mk) = R km), we can show that

Romk) E{ARN2m A rk= [R km ) E{ARN 2 k Arm) ]. (A17)

Hence, it follows that the expression given in Eq. (3.32) is real because every term of Eq. (A14) is
either real or has an associated complex conjugate term. Hence, E{Ar' Ro- AR R- 1ro) can be found by
using the expression for E{r' R- 1 ARR-1 Ar) previously given.

6. The E{Ar' Ro- Ar) Term:

We can show that
N N

E{Ar' R-1 Ar- I I Rokm) E{Ark* Arm). (A18)
k=l m=1

Using the definitions of the Ar elements given by Eq. (3.19) and multiplying out these expressions we
obtain

E{Ark * A~rm = E f IH12 AHA ejirBT (N2-k) dzo

f |H12 AH *e jiTBT(m-N2)

+Ej2 AH *e iorBT(N2-k)
+ E If 11 2AMe do'

f X IH12 AHM e jorBT(m-N2)du)J + E{ O(AHA AHM)). (A19)

The last term in Eq. (A19) equals zero. Because of the identical statistics of AHA and AHM, the first
two terms are equal. Thus, we can evaluate the above as

E{Ark* Arm) = 2o-2 m I[ - IH 1d e'2 dco IH12ej"BT (m-N2):do' (A20)
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Appendix B

EVALUATION OF INTEGRALS

In this appendix, we evaluate the integrals seen in Eqs. (3.35) and (3.36) for when the FTF is a
Butterworth filter. Expressions for these integrals were listed in Eqs. (4.5) to (4.7). These integrals
can be derived by using the Theory of Residues [2].

First, we find an expression for H(s)H(-s) which is consistent with Eqs. (4.1) and (4.3). It is
easily shown that

IH(s)H(-s) = 1 + ( 1)M 52M (B1)

Next, the poles of H(s)H(-s) are identified. These poles lie on the unit circle and are equally spaced
in angle (see Fig. 4.2). We can show that the right-hand plane poles are given by the expression

(R) -(2i -1)p(R) = eje 2M , i = 1,2,..., M (B2)

and the left-hand plane poles are given by the expression

pW =j , i= 1,2,..., M. (B3)

Note that the expressions do not depend on whether M is even or odd as does H(s)H(-s) and that
there are no poles on the imaginary axis (the jso axis). We set the poles of H(s) equal to the left-hand
plane poles:

S, = 1 (L), == 1,2,..., M. (B4)

In Fig. B1, we designate the path of integration of the integrals seen in Eqs. (3.35) and (3.36) as
contour Cl; i.e., -jo < jXo < joo. In addition, we have shown two other contours: C2 and C3. Let
K (s) be the kernal of any of the integrals to be evaluated. We can then write

XC1 K(s) ds =c +C2K(s)ds c 2K(s) ds (B5)

or

fc K(s) ds = fc + C3 K(s) ds - 3 K(s)ds (B6)

Depending on the kernal, we can show that as RC - °° then either both the C2 and C3 contour
integrals go to zero, or one goes to zero and the other goes to infinity. In our evaluation, we always
choose the one that goes to zero so that we can form a closed contour about either the right-side plane
poles (contour C1 + C2 ) or left-side plane poles (contour C1 + C3) and thus use the Theory of Resi-
dues.
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Fig. Bi - Contours of integration

1. Derivation of Eq. (4.5)

We can show for m K n

f JHQJ) 12 eiw1BT(n -m) do' = co esTBT(n - m) ds

J'C1 + 3 1 + (- 1 )M SIM

M
= 27r z Resi (B7)

where Res, are the M residues of the above kernal about the poles in the left-hand plane. Note we
have used the fact that the integral along C3 as seen in Eq. (B6) goes to zero as R,-°°. All the poles
are single poles. It can be shown by use of the Theory of Residues that

Resi = lim e - (- Pi ) (B8)
S-~P/L 1 1 + (-..)M S2M

or evaluating the above limit

Res CO- Pi (L) ePi(L)rBT(n-m) (B9)Re1 2M

Substituting Eq. (B3) into Eq. (B9) and then substituting Eq. (B9) into Eq. (B7) results in Eq. (4.5b).
Note we have substituted I for i in Eq. (4.5b).

We can also show for m > n that

CO e s2 BT(n ) m) ds M
j H(jo)) 12 eJro~BT(n - m) do' = I1 ( 1 )M 5 2 -- Resi (BlO)

f - j 1 12 1 + (-J)1 12M
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where Resi are the M residues of the above kernal. We used the fact that the integral along C2 seen in
Eq. (B5) goes to zero as Rc

It can be shown that

Res = lim c es7rBT(n - m) (S - 'p(R)) (B|I)
sIpjR)I 1 + ( 1 )M 5 2M |

or evaluating the above limit

Resi = - ° (R) epi(R)7TBT(n - m) (B12)

Substituting Eq. (B2) into Eq. (B12) and then substituting Eq. (B12) into Eq. (B10) results in Eq.
(4.5a). Again we have set I = i in Eq. (4.5a).

2. Derivation of Eq. (4.6)

We can show that

_IH__u)12 _ 1 co ds
J jo- S 512 j fl + C2 (1 + (_ 1)M 52M) (S - 5) (_-Ss,

M
=-27r Resn (B13)

m=l

where Resm m = 1,2,..., M are the residues of the above kernal. Again we have used the fact that
the integral along C2 seen in Eq. (B5) goes to zero as RC - °°. All of the poles (in the right-hand
plane) of this kernal are single poles except when i = m or

pi (R) = -Si (B14)

which results in a double pole.

For the single poles, m •i, we can show
-p(R)

Resm f im COmj.(1315)m lm(R)|C 0 (1 + (-1) M 5 2M) (S - S(-s-,)

We can show using l'Hopital rule that

Rs CO 1
2M p(R) - p(R)*+ 5- 5

JCo 1 (B16)

M cos r (2m - 1) - cos 2 (2i - 1)

Since all of the Resi, for m • i, are purely imaginary and we know that the integral to be evaluated is
real, these terms will cancel out with the imaginary part of Resi. We can show that

Resi = lim I d[ co ( + S* 5 (B17)
S s,-- ds (1 + (_ . 1 ) M S2M) (S - Si.) IJj.
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After taking the derivative and applying l'Hopital rule twice, we find that

CO CO 1 sI -si

Resi =2 s5 + s 4M (s + si)2

Co 1 c

sin 27 (2i - 1)
- i½

c cos 2M (2i - 1)-

2M

Adding all the residues and evaluating Eq. (B13) results in Eq. (4.6).

3. Derivation of Eq. (4. 7)

It can be shown that for k ( n

CX I H (o) 12 ejiwBT(k - n)do I +o1 + esrBT(k - n) ds
J-xo jCO - S, -j +( 1 )M 5 2M)(S - S5)

M
= - 2

IT S Resm
m = I

(B119)

where Resm,m = 1,2,..., M denotes the residues of the above kernal. All of the poles are single poles.
We can show that

Res .. = lim
sP (R)

I -(S - pmR)) esgrBT(k -n)

° (1 + (_1)M S2M)(S - S) J

Co m(R) p(R) (k - n)irBT

2M p(R) -S

If Eq. (B2) is substituted into Eq. (B21) and then Eq.
(4.7a) results with k = N2 .

(B20)

(B2 1)

(B21) is substituted into Eq. (B19), then Eq.

For k > n, we can show that

jH1(o) 12 ejiBT(k -n)d
f w j - Si J fC1 + C3 71

co es7rBT(k - O ds

+ (-1 )M 52M)(5 - S5)

M
= 2 7r I Resm (B22)

m =l

where Resm, m = 1,2,..., M are the residues of the above kernal. This kernal has M - 1 single poles
and one double pole for when m = i. For m •£ i, we can show that

* l (s -pmL)) esfrBT(k - n)ResM = lm( C(1 + (-1 )M s2M)(s -s) |

wrBT(k - n) sin -r-(2m - 1) jIrBT(k - n) cos V-- (2m - 1)
co e 2M e 2M f'o

j-r (i - m)
1 IrM

kDLJJ
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For i = m, we can show that 2:

d (s-5,) esBT(k - n) Resi = imn d 1 +- si() e (B24) eCZ-
-S,ds I N-) SIM(B4

After taking the derivative and applying l'Hopital rule twice, the following expression results:

Res1 = 2M l |M.5-BT(k- n) jeJ" )~ J e -rBT(kn) sin 2M (2i-1) jrBT(k-n)cos 2 (2i- 1)

Substituting Eqs. (B23) and (B25) in Eq. (B22) results in Eq. (4.7b) with k = N2.
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